

Cambridge International Examinations

Cambridge International Advanced Subsidiary and Advanced Level

PHYSICS 9702/21

Paper 2 AS Level Structured Questions

October/November 2016

MARK SCHEME
Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

© UCLES 2016

Page 2		Mark Scheme	Syllabus 9702	Paper	
		Cambridge International AS/A Level – October/November 2016		21	
1	(a) (de	ensity =) mass/volume		B1	[1]
	(b) (i)	$d = [(6 \times 7.5)/(\pi \times 8100)]^{1/3}$			
		= 0.12(1) m		A1	[1]
	(ii)	percentage uncertainty = (4 + 5)/3 (= 3%) or			
		fractional uncertainty = $(0.04 + 0.05)/3$ (= 0.03)		C1	
		absolute uncertainty (= 0.03×0.121) = 0.0036		C1	
		$d = 0.121 \pm 0.004 \mathrm{m}$		A1	[3]
2	(a) for	ce per unit positive charge		B1	[1]
	(b) (i)	time = $5.9 \times 10^{-2}/3.7 \times 10^{7}$ = 1.6×10^{-9} s $(1.59 \times 10^{-9}$ s)		A1	[1]
	(ii)	E = V/d		C1	
		$= 2500 / 4.0 \times 10^{-2}$			
		= $6.3 \times 10^4 \mathrm{N}\mathrm{C}^{-1}$ (6.25 × 10 ⁴ or 62500 N C ⁻¹)		A1	[2]
	(iii)	$a = Eq/m$ or $F = ma \underline{and} F = Eq$		C1	
		= $(6.3 \times 10^4 \times 1.60 \times 10^{-19})/9.11 \times 10^{-31} = 1.1 \times 10^{16} \text{m s}^{-2}$		A1	[2]
	(iv)	$s = ut + \frac{1}{2}at^2$			
		$= \frac{1}{2} \times 1.1 \times 10^{16} \times (1.6 \times 10^{-9})^2$		C1	
		$= 1.4 \times 10^{-2} \text{ (m)}$		C1	
		distance from plate = 2.0 – 1.4 = 0.6 cm (allow 1 or more s.f.)		A1	[3]
	(v)	electric force » gravitational force (on electron)/weight or			
		acceleration due to electric field » acceleration due to gravitational	field	B1	[1]
	(vi)	v_X – t graph: horizontal line at a non-zero value of v_X		B1	
		<i>v</i> _Y − <i>t</i> graph: straight line through the origin with positive gradient		В1	[2]

		Cambridge International AS/A Level – October/November 2016 9702	21	
3	` '	ce/load is proportional to extension/compression (provided proportionality limit not exceeded)	B1	[1]
	(b) (i)	k = F/x or $k = gradient$	C1	
		$k = 600 \mathrm{N}\mathrm{m}^{-1}$	A1	[2]
	(ii)	$(W =) \frac{1}{2}kx^2$ or $(W =) \frac{1}{2}Fx$ or $(W =)$ area under graph	C1	
		$(W =) 0.5 \times 600 \times (0.040)^2 = 0.48 \text{J}$ or $(W =) 0.5 \times 24 \times 0.040 = 0.48 \text{J}$	A1	[2]
	(iii)	1. $(E_{\rm K} =) \frac{1}{2} m v^2$	C1	
		$= \frac{1}{2} \times 0.025 \times 6.0^{2}$		
		= 0.45 J	A1	[2]
		2. (work done against resistive force =) $0.48 - 0.45$ [= $0.03(0)$ J]	C1	
		average resistive force = 0.030/0.040	C1	
		= 0.75 N	A1	[3]
	(iv)	efficiency = [useful energy out/total energy in] (×100)	C1	
		= [0.45/0.48] (×100)		
		= 0.94 <i>or</i> 94%	A1	[2]
4	of t	a) the number of oscillations per unit time of the source/of a point on the wave/of a particle (in the medium)		[2]
		number of wavelengths/wavefronts per unit time ssing a (fixed) point	(M1) (A1)	
	(b) To	or period = $2.5 \times 250 \; (\mu s) \; (= 625 \; \mu s)$	M1	
	fre	quency = $1/(6.25 \times 10^{-4})$ or $1/(2.5 \times 250 \times 10^{-6})$ = 1600Hz	A1	[2]
	(c) (i)	for maximum frequency: $f_0 = f_s v / (v - v_s)$		
		$1640 = (1600 \times 330) / (330 - v_s)$	C1	
		$v_{\rm s} = 8(.0){\rm ms^{-1}}(8.049{\rm ms^{-1}})$	A1	[2]
	(ii)	loudspeaker moving towards observer causes rise in/high <u>er</u> frequency loudspeaker moving away from observer causes fall in/low <u>er</u> frequency or	B1 B1	[2]
		repeated rise and fall/higher and then lower frequency caused by loudspeaker moving towards and away from observer	(M1) (A1)	

Mark Scheme

Syllabus

Paper

Page 3

		Cambridge International AS/A Level – October/November 2016 9702	21	
5	(a)	wave incident on/passes by or through an aperture/edge wave spreads (into geometrical shadow)	B1 B1	[2]
	(b)	$n\lambda = d\sin\theta$	C1	
		substitution of $\theta = 90^{\circ}$ or $\sin \theta = 1$	C1	
		$4 \times 500 \times 10^{-9} = d \times \sin 90^{\circ}$		
		line spacing = 2.0×10^{-6} m	A1	[3]
	(c)	wavelength of red light is longer (than 500 nm)	M1	
		(each order/fourth order is now at a greater angle so) the fifth-order maximum cannot be formed/not formed	A1	[2]
6	(a)	work done or energy (transformed) (from electrical to other forms) charge	B1	[1]
	(b)	(i) 1. $V = IR$ or $E = IR$	C1	
		I = 14/6.0 = 2.3 (2.33) A	A1	[2]
		2. total resistance of parallel resistors = 8.0Ω	C1	
		current = $14/(6.0 + 8.0)$ = $1.0 A$	A1	[2]
		(ii) $P = EI$ (allow $P = VI$) or $P = V^2/R$ or $P = I^2R$	C1	
		change in power = $(14 \times 2.33) - (14 \times 1.0)$ or $(14^2 / 6.0) - (14^2 / 14)$ or $(2.33^2 \times 6.0) - (1.0^2 \times 14)$		
		= 19W (18W if 2.3 A used)	A1	[2]
	(c)	I = Anvq		
		ratio = $(0.50n/n) \times (1.8A/A)$ or ratio = 0.50×1.8	C1	
		= 0.90	A1	[2]

Mark Scheme

Syllabus

Paper

Page 4

			Cambridge International AS/A Level – October/November 2016 9702	21	
7	(a)	or had or	dron not a fundamental particle/lepton is fundamental particle dron made of quarks/lepton not made of quarks	5 .	
		stro	ong force/interaction acts on hadrons/does not act on leptons	B1	[1]
	(b)	(i)	proton: up, up, down/uud neutron: up, down, down/udd	B1 B1	[2]
		(ii)	composition: 2(uud) + 2(udd) = 6 up, 6 down/6u, 6d	В1	[1]
	(c)	(i)	most of the atom is empty space		
	(-)	(-)	or		
			the nucleus (volume) is (very) small compared to the atom	B1	[1]
		(ii)	nucleus is (positively) charged	B1	
			the mass is concentrated in (very small) nucleus/small region/small volume/small core or		
			the majority of mass in (very small) nucleus/small region/small volume/small core	B1	[2]

Mark Scheme

Syllabus

Paper

Page 5